Primitive vs non primitive data structure

Introduction

In computer science and programming, data structures are important for
effectively organizing and storing data. They are treated as the building blocks
for developing efficient algorithms which optimize program performance. Data
structures can be classified into two categories: primitive and non-primitive.
This article will discuss the characteristics, applications, and differences
between these two types of data structures.

There are two types of data structures.

e Primitive Data Structures
e Non-primitive Data Structure

Data Structure
Primitive Non-Primitive
Data Structure Data Structure

¢m¢ =N
mm

Differences between Primitive and Non-Primitive Data
Structures:

JavaVWlpoint

Data Structure Data Structure

Primitive " S Non-Primitive

Primitive

Non- Primitive

Primitive data structures have
a fixed size and consume
constant memory, regardless
of the amount of data stored.

Non-primitive data structures
require additional memory to
store metadata and provide a
dynamic allocation of memory
based on the data size.

Primitive data structures have
limited flexibility in terms of
operations and data
organization.

Non-primitive data structures
offer more flexibility, allowing
complex operations, dynamic
resizing, and hierarchical
relationships between data
elements.

Primitive data structures are
simple and straightforward,
with basic operations and
constant time complexity.

Non-primitive data structures
offer more flexibility, allowing
complex operations, dynamic
resizing, and hierarchical
relationships between data
elements.

Primitive data structures are
straightforward, with basic
operations and constant time
complexity.

Non-primitive data structures
can be more complex, with
varying time complexity for
different operations, depending
on the structure's size and
organization.

Primitive data structures are
usually built into
programming languages, with
direct support from compilers
and interpreters.

Non-primitive data structures
require custom implementation
using primitive data types and
programming constructs.

Primitive Data Structures:

Primitive data structures are fundamental and built-in data types provided by
programming languages. They are typically simple and have a fixed size.
Examples of primitive data structures include integers, floating-point numbers,
characters, booleans, and pointers. Here are some key aspects of primitive data
structures:

e Primitive data structures are atomic, meaning they cannot be broken down
into smaller components.

e They have a predefined range of values and operations associated with
them.

e The hardware directly supports them and is often represented using a fixed
number of bits.

e They are lightweight in terms of memory consumption and are optimized
for performance.

Primitive data structures are commonly used for simple and basic operations in
programming, such as arithmetic calculations, logical comparisons, and storing
individual data elements. They serve as the building blocks for more complex
data structures and algorithms.

Example
Integer

Declare and assign an integer
num = 10

Floating-point Number

Declare and assign a floating-point number
pi=3.14159

Character

Declare and assign a character
char ="A'

Boolean

Declare and assign a boolean value
is_true = True

Array

Declare and assign an array
numbers = [1, 2, 3, 4, 5]

Applications:

e Primitive data structures are widely used in various programming scenarios,
such as arithmetic operations, logical comparisons, and basic data
manipulation.

e They serve as the foundation for more complex data structures and
algorithms.

e Primitive data structures are essential for low-level programming, requiring
direct control over memory and hardware.

Non-Primitive Data Structure

Non-primitive data structures are derived from primitive data types and offer
more flexibility in storing and organizing data. They are also known as
composite or abstract data types. Non-primitive data structures can be
categorized into two main types: linear and nonlinear. Let's explore their
characteristics and applications:

Further, Non-primitive Data Structure is classified into two types
e Linear
e Non-Linear

Linear Data Structures:

e Linear data structures organize data elements sequentially, one after
another. Examples include arrays, linked lists, stacks, and queues.
They allow easy access to data elements using indexes or pointers.

e Linear data structures are useful for scenarios involving iterative
processing, searching, sorting, and managing data in a specific order.

Furthermore, Linear is Divided into two parts
e Statics
e Dynamic

Static: Fixed-size collections of elements stored in contiguous memory
locations. The size is predetermined at compile time and cannot be changed
during runtime.

e Array - An array is a collection of elements of the same type arranged
in contiguous memory locations. Once the size of an array is defined, it
cannot be changed during program execution.

Dynamic: Resizable arrays that can grow or shrink dynamically as needed.
They allocate a new block of memory when the capacity is exceeded.

Now Dynamic is Classified into three types
e Linked List
e Stack
e Queue

e Linked List - A linked list is a linear data structure in computer
science; linked lists are widely used in various applications and are
fundamental to understanding data structures and algorithms. The
linked list is called "linked" because these references connect or link
the nodes.

Implementation of a Linked List data structure in Python

class Node:
def init (self, value):
self.value = value
self.next = None

class LinkedList:
def init (self):
self.head = None

def append(self, value):
new_node = Node(value)

if self.head is None:
self.head = new node
else:

current = self.head

while current.next:
current = current.next

current.next = new_node

def display(self):
current = self.head
while current:
print(current.value, end="")
current = current.next

print()

Example usage

linked list = LinkedList()
linked list.append(10)
linked list.append(20)
linked list.append(30)
linked list.display()

Output

...Program finished with exit code 0
Press ENTER to exit console.l

e Stack: A Last-In-First-Out (LIFO) data structure where elements are
added and removed from the top of the stack. It follows a "push"
operation to add elements and a "pop" operation to remove elements.

Implementation of a stack data structure in Python

class Stack:
def init (self):
self.stack =[]

def push(self, value):
self.stack.append(value)

def pop(self):
if self.is_empty():
return None
return self.stack.pop()

def'is_empty(self):
return len(self.stack) ==

def peek(self):
if self.is_empty():
return None
return self.stack[-1]

Example usage

stack = Stack()

stack.push(10)

stack.push(20)

stack.push(30)
print(stack.peek()) # Output: 30
print(stack.pop()) # Output: 30
print(stack.pop()) # Output: 20

...Program finished with exit code 0
Press ENTER to exit console.[]

e Queue - A queue is an abstract data type that works on First-In-First-
Out (FIFO) principle. The first element inserted is the first to be
removed, similar to people waiting in a queue. Queues are used in
scenarios where the order of insertion and removal is significant, such
as scheduling, resource allocation, and breadth-first search algorithms.
It follows an enqueue to add elements and a dequeue operation to
remove them.

Implementation of a queue data structure in Python

Output:

10
10
20

Nonlinear Data Structures:

Nonlinear data structures are widely used for hierarchical data representation,
network analysis, indexing, and efficient data retrieval.

e Nonlinear data structures organize data elements in a hierarchical or non-
sequential manner. Examples include trees, graphs, and hash tables.

e They provide more complex relationships between data elements, allowing
efficient searching, insertion, and deletion operations.

e Nonlinear data structures are suitable for modeling real-world scenarios,
such as hierarchical relationships, network connections, and complex data
dependencies.

Nonlinear Data Structures are classified into two type

o Tree
e Graph
Tree

Trees are nonlinear data structures mainly composed of nodes connected by
edges; there are many types of trees, such as binary trees, binary search trees,
balanced trees, heaps, and many more. Below we will see the implementation
of the binary tree.

Implementation of Binary Tree in Python

class TreeNode:
def init_ (self, data):
self.data = data
self.left = None
self.right = None

Create the binary tree
root = TreeNode(1)

root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)

Traverse the binary tree (in-order traversal)
def inorder_traversal(node):
if node:
inorder_traversal(node.left)
print(node.data)
inorder_traversal(node.right)

print(''In-order Traversal:')
inorder_traversal(root)

Output

...Program finished with exit code 0
Press ENTER to exit console.

The code is the basic structure of a binary tree and how to perform an in-order
traversal recursively. Binary trees are widely used data structures and traversals
like in-order, pre-order, and post-order help visit and process nodes in different
orders, depending on the desired operation.

Graph
Graphs are nonlinear data structures composed of nodes (vertices) connected
by edges.

import networkx as nx
import matplotlib.pyplot as plt

Create the graph
G = nx.Graph()

Add nodes
G.add nodes from([1, 2, 3, 4, 5])

Add edges
G.add edges from([(1, 2), (1, 3), (2, 4), (2, 5)])

Visualize the graph
nx.draw(G, with_labels=True)
plt.show()

Note:- Considering these differences is important when selecting the
appropriate data structure for a specific programming task.

Conclusion

Both primitive and non-primitive data structures are essential in programming
and data management. Primitive data structures provide the basic building
blocks for representing simple data types efficiently. On the other hand, non-
primitive data structures offer more flexibility, allowing complex data
organization, efficient searching, and dynamic resizing. Understanding the
characteristics and differences between these two types of data structures is
crucial for selecting the appropriate structure to optimize program performance
and achieve efficient data management in various programming scenarios.

